Controlling Large-Scale Systems with Distributed Model Predictive Control

James B. Rawlings

Department of Chemical and Biological Engineering

November 8, 2010
Annual AIChE Meeting
Salt Lake City, UT
Outline

1. Overview of Distributed Model Predictive Control
 - Control of large-scale systems

2. Cooperative Control
 - Stability theory for cooperative MPC

3. Conclusions and Future Outlook

4. Some Comments on Tom Edgar
What are the goals of MPC?

- Choose inputs which bring outputs to their setpoints
- Minimize objective function over N future steps

Minimize objective function:

$$
\min_{u} \quad V(x, u) = \sum_{k=0}^{N-1} \ell(x(k), u(k)) + V_f(x(N))
$$

subject to:

$$
x^+ = Ax + Bu \\
y = Cx
$$
Chemical plant integration

Material flow

Energy flow
Ideal plantwide MPC

\[\min_{u_1, u_2} V(u_1, u_2) \]

- Ideal controller
 - perfect model
 - never goes offline
 - optimizes infinitely fast
 - samples infinitely fast
Practical plantwide MPC

\[
\begin{align*}
\min_{u_1} & \quad \tilde{V}_1(u_1) \\
\min_{u_2} & \quad \tilde{V}_2(u_2)
\end{align*}
\]

- Realistic controller
 - approximate model
 - MPCs fail or require maintenance
 - finite optimization time
 - multiple sampling rates

- Goal: make realistic controller close to ideal controller
Plantwide distributed MPC

MPC 1
\[\min_{u_1} V(u_1, u_2) \]

MPC 2
\[\min_{u_2} V(u_1, u_2) \]

- Decentralized control
 - no communication
 - not stable for strongly interacting subsystems

- Noncooperative control
 - use full modeling information
 - not stable for strongly interacting subsystems

- Cooperative control
 - use same objective in each controller
 - stability independent of interaction strength
Cooperative model predictive control

\[V(u_1, u_2) \]

\[u_0, u_1, u_2, u_0^* \]

MPC 1

MPC 2
Plantwide suboptimal MPC

Early termination of optimization gives suboptimal plantwide feedback

Use suboptimal MPC theory to prove stability
Plantwide suboptimal MPC

Consider closed-loop system augmented with input trajectory

\[
\begin{pmatrix}
 x^+ \\
 u^+
\end{pmatrix} = \begin{pmatrix}
 A & B \\
 g(x, u)
\end{pmatrix}
\]

- Function \(g(\cdot) \) returns suboptimal choice
- Stability of augmented system is established by Lyapunov function

\[
0 \leq V(x, u) \leq b |(x, u)|^2
\]

\[
V(x^+, u^+) - V(x, u) \leq -c |(x, u)|^2
\]

- Adding constraint establishes closed-loop stability of the origin for all \(u \)

\[
|u| \leq d |x| \quad x \in \mathbb{B}_r, r > 0
\]

- Cooperative optimization satisfies these properties for plantwide objective function \(V(x, u) \)

\(^1\) (Rawlings and Mayne, 2009, pp.418-420)
LV control of distillation column

- MPC 1
- MPC 2

- S
- R
- X_D
- X_B
LV control of distillation column

![Graphs showing control performance over time for distillation column](image-url)
Performance comparison

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Performance loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized MPC</td>
<td>75.8</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative MPC (10 iterates)</td>
<td>76.1</td>
<td>0.388</td>
</tr>
<tr>
<td>Cooperative MPC (1 iterate)</td>
<td>87.5</td>
<td>15.4</td>
</tr>
<tr>
<td>Noncooperative MPC</td>
<td>382</td>
<td>404</td>
</tr>
<tr>
<td>Decentralized MPC</td>
<td>364</td>
<td>380</td>
</tr>
</tbody>
</table>
Plantwide topology

- Plant subsystems can often be grouped spatially or dynamically.
- Neighborhoods of subsystems naturally arise from topology.
Traditional hierarchical MPC

- Multiple dynamical time scales in plant
- Data and setpoints are exchanged on chosen scale
- Optimization performed at each layer

2Mesarović et al. (1970); Scattolini (2009)
Cooperative MPC data exchange

- All data exchanged plantwide
- Data exchange at each controller execution

Venkat (2006); Stewart et al. (2010b)
Cooperative hierarchical MPC

- Optimization at MPC layer only
- Only subset of data exchanged plantwide
- Data exchanged at chosen time scale

4Stewart et al. (2010a)
The challenge of nonlinear models

\[V(u_1, u_2) \]
Distributed gradient projection - example

\[V(u_1, u_2) = e^{-2u_1} - 2e^{-u_1} + e^{-2u_2} - 2e^{-u_2} + 1.1 \exp(-0.4((u_1 + 0.2)^2 + (u_2 + 0.2)^2)) \]
Conclusions

Cooperative MPC theory maturing (Stewart et al., 2010b; Maestre et al., 2010)

- Satisfies hard input constraints
- Provides nominal stability for plants with even strongly interacting subsystems
- Retains closed-loop stability for early iteration termination
- Converges to Pareto optimal control in the limit of iteration
- Remains stable under perturbation from stable state estimator
- Avoids coordination layer
Future Outlook

Extensions required for practical implementation

- Can we treat nonlinear plant models? Qualified yes.
- Can we avoid coupled constraints? Qualified yes.
- Can we reduce the assumed complete communication? Yes.
- Can we accommodate time-scale separation? Yes.
- Can we nest layers within layers? Yes.
Personal observations of Tom

- He’s old
 I took optimization from Tom when I was an undergraduate!
 I did research with Tom when I was an undergraduate!
 My son is now doing research with Tom as an undergraduate!

- He’s wily
 I’ve played a lot of golf with Tom over the years at research meetings, and I want to make it clear he cheats!
 Tom was department chair when I joined the University of Texas as an assistant professor. He was a great mentor.

- He’s a lot of fun to be around
Further reading

